Десять самых больших телескопов в мире. Самые большие и мощные телескопы в мире

БТА телескоп — крупнейший оптический телескоп в Евразии, самый большой телескоп в России. Полное название и расшифровка аббревиатуры звучит так — Б ольшой Т елескоп А льт-Азимутальный.

Диаметр зеркала — 6 метров.

Установлен у подножия горы Пастухова на высоте 2070 м над уровнем моря. Карачаево-Черкессия. Работает еще с 1966 года.

В далеком 1975 году телескоп считался крупнейшим в мире, превзошедший по своим параметрам и техническим возможностям телескоп Хейла в Паломарской обсерватории (Калифорния). Но в 1993 году пальму первенства, если так можно выразиться, отобрал десятиметровый телескоп американской Обсерватории Кека, расположившийся на пике горы Мауна-Кеа (4145 метров над уровнем моря), на острове Гавайи. И неудивительно, при таких средствах вложенных в проект (более 70 млн $), по астрономическим меркам получился настоящий гигант в научных исследованиях космоса.

Спрашивается, почему Россия позволила американцам (или как только мы не привыкли их называть), в этом вопросе быть дальновидней наших проектов и разработок? Почему советские разработки и мегапроекты были лучшими во всем мире, а проекты постсовесткой эпохи только-только набирают обороты, поднимаясь с колен? Благо хоть поднимаются. Однако, не припоминаю, чтобы в роснауке было столько благотворительных фондов или меценатов-добродетелей, как в штатах. А ведь, могли бы потрясти какую-нибудь кучку олигархов с их миллиардами… Суммы-то не ахти какие запредельные, учитывая роскошные виллы и яхты, острова и другие бессмысленные инвестиции некоторых из русских представителей «сильные мира сего»…

К слову, американцы в 1985 году привлекли к работе средства благотворительного фонда Уильяма Майрона Кека, который, собственно и профинансировал весь проект солидным чеком в более 70 млн $. Фонд основанный в 1954 году Уильямом Майроном Кеком (1880-1964) и сегодня специализируется поддержкой научных открытий и новых технологий. И вот, что у них получилось:

Тем не менее, возвращаясь к нашему телескопу, БТА оставался телескопом с крупнейшим в мире монолитным зеркалом вплоть до 1998 года. Но самая любопытная информация, вошедшая в перечень офигенно крутых — по сей день купол БТА является крупнейшим астрономическим куполом в мире. Ну, хоть Купол (!) у нас — лучший в мире.

Чтобы правильно меня понимали — нет целей и задач одними восторгаться, а своих поливать псевдогрязью… Нет! Хочется, чтобы по-людски было, чтобы в науку вкладывали больше, чем в вооружение, больше, чем в «приоритетные» разборки с трубами от Газпрома, выясняя какой поток лучше — северный, южный или еще какой… Хочется, чтобы вкладывали больше, чем другие государства. И, быть может ученые никуда уезжать не станут? — А что? Верить-то хочется…

Итак, телескоп БТА — как одно из самых значимых изобретений, гордость советских ученых и инженеров достался России, как правопреемнице СССР. Что нам не мешало бы знать о нем? Постарался найти и сжать информацию до более-менее перевариваемой, и интересной.

1. ЛЫТКАРИНСКОЕ ОПТИЧЕСКОЕ СТЕКЛО

В мире только пять стран, которые могут производить весь спектр оптического стекла: Россия, Германия, Китай, США и Япония. Лыткаринский завод известен, прежде всего, своей крупногабаритной оптикой. Его зеркала установлены на крупнейших телескопах по всему миру. Одно из таких зеркал завода и установлено на телескопе БТА, что собственно и позволило получить звание сразу в двух номинациях — «самое большое зеркало в Евразии» и «самый большой телескоп в Евразии»…Одно дополняет другое.

Чуть не забыл, вес зеркала — чуть более 40 тонн. При том, что масса подвижной части телескопа - около 650 тонн, а общая масса телескопа - около 850 тонн.

Была информация, что в 2015-м году зеркало должны были поменять на обновленное — весом в 75 тонн, но информации о проделанной работе за прошлый год я не нашел, даже на официальном сайте Лыткаринского завода. Сообщалось только, что должны это сделать:

«В следующем году (прим ред — в 2015г), в мае, мы будем отгружать 75-тонное зеркало для большого азимутального телескопа. По технологии такое зеркало после выплавки должно остужаться полтора года. Это самое крупное зеркало, изготовленное для телескопа, станок для его полировки на Лыткаринском заводе оптического стекла в высоту составляет чуть ли не 12 этажей», — сообщил генеральный директор холдинга «Швабе» — Сергей Максин на международной выставке «Оборонэкспо».


Фото: архив САО РАН

2. В чем уникальность

По техническим меркам в 60-70 гг — разработка считалась революционной. Аналогов проекту не было. Механика телескопа послужила прототипом для всех последующих телескопов. Все телескопы, даже меньшего размера, стали делать по образцу БТА.

Кстати, название телескопа было предопределено. Ведь — телескоп не статический, у него две оси - вертикальная и горизонтальная. Они позволяют поворачивать конструкцию по оси и по азимуту. Отсюда и название — Б ольшой Т елескоп А льт-Азимутальный.

В советское время, помимо огромного штата сотрудников из несколько сотен человек, за работой телескопа также следил огромнейший крупногабаритный компьютер, который сейчас стоит в музее обсерватории. Со временем, датчики, систему управления модернизировали, а механика осталась. Советские технологии — это Вам не хухры-мухры… Делали на века.

3. Штат сотрудников

Со слов астронома Алексея Моисеева , сейчас в обсерватории трудятся около 400 человек.

«…у нас один из самых высоких процентов ненаучного состава среди институтов Российской академии наук - инженеров, техников. У нас два основных телескопа: шестиметровый БТА и радиотелескоп «Ратан-600». Нужны люди, чтобы их обслуживать. У нас время простоя телескопов по техническим причинам измеряется всего лишь часами в год - это очень мало.

К слову, недалеко от обсерватории был построен академгородок, где сегодня живут около 1200 человек — ученые с семьями. Несмотря на протесты против строительства городка со стороны первого директора обсерватории — Ивана Копылова, решено было строить. А протест заключался в следующем — астрономы не геологи, не нужно заставлять их работать вахтовым методом.

Сегодня одна из самых больших проблем академгородка — медицинское обслуживание. Как оказалось, в результате реформы РАН в 2015 году, Федеральное агентство научных организаций отказывается поддерживать местную амбулаторию, а до ближайшей больницы - 30 км горной дороги. Вопрос — с ума сошли? С одной стороны поднимаете вопросы — отчего такая большая утечка мозгов, с другой стороны — сами же выпихиваете из страны такими условиями…

Это аксиома: в любой стране мира астроном с хорошими знаниями и подготовкой может найти множество сфер, где он заработает больше, чем в науке. На энтузиазме и бестолковых реформах страна не перейдет на новый уровень…

В завершении, рекомендую полистать с большим количеством качественных снимков о телескопе БТА. А также рекомендую к просмотру короткий видеоролик от «Телестудии Роскосмоса». Там же — на канале Роскосмоса, очень много интересных видео обзоров — для самых любознательных. А пока что — короткий факты о телескопе БТА:

Продолжение обзора самых крупных телескопов мира, начатого в

Диаметр главного зеркала более 6 метров.

Смотрите так же расположение крупнейших телескопов и обсерваторий на

Многозеркальный Телескоп

Башня «Многозеркального телескопа» на фоне кометы Хейла-Боппа. Гора Маунт-Хопкинс (США).

Multiple Mirror Telescope (MMT). Находится в обсерватории «Маунт-Хопкинс» в штате Аризона, (США) на горе Маунт-Хопкинс на высоте 2606 метров. Диаметр зеркала — 6,5 метров. Начал работу с новым зеркалом 17 мая 2000 г.

На самом деле этот телескоп был построен в 1979 году, но тогда его объектив был выполнен из шести зеркал по 1,8 метра, что эквивалентно одному зеркалу диаметром 4,5 метра. На момент постройки это был третий по мощности телескоп в мире после БТА-6 и Хейла (см. предыдущий пост).

Шли годы, технологии улучшались, и уже в 90-х стало ясно, что вложив относительно небольшое количество средств, можно заменить 6 отдельных зеркал на одно большое. Причём, это не потребует значительных изменений конструкции телескопа и башни, а количество света, собираемое объективом увеличится в целых 2,13 раза.


Multiple Mirror Telescope до (слева), и после (справа) реконструкции.

Эта работа была выполнена к маю 2000 года. Было установлено 6,5 метровое зеркало, а так же системы активной и адаптивной оптики. Это не цельное, а сегментированное зеркало, состоящее из точно подогнанных 6-ти угольных сегментов, так что название телескопа менять не пришлось. Разве, что иногда стали добавлять приставку «новый».

У нового MMT, кроме того что он стал видеть в 2,13 раза более слабые звёзды, в 400 раз увеличилось поле зрения. Так что, работа явно не прошла даром.

Активная и адаптивная оптика

Система активной оптики позволяет при помощи специальных приводов, установленных под главным зеркалом, компенсировать деформацию зеркала при вращении телескопа.

Адаптивная оптика , посредством отслеживания искажения света искусственных звёзд в атмосфере, созданных с помощью лазеров, и соответствующего искривления вспомогательных зеркал, компенсирует атмосферные искажения.

Телескопы Магеллана

Телескопы Магеллана. Чили. Расположены на расстоянии 60 м. друг от друга, могут работать в режиме интерферометра.

Magellan Telescopes — два телескопа — «Магеллан-1» и «Магеллан-2», с зеркалами по 6,5 метров диаметром. Расположены в Чили, в обсерватории «Лас-Кампанас» на высоте 2400 км. Кроме общего названия у каждого из них есть ещё и своё имя — первый, назван в честь немецкого астронома Вальтера Бааде, начал работу 15 сентября 2000 года, второй, названный в честь Лэндона Клэя — американского филантропа, вступил в строй 7 сентября 2002 года.

Обсерватория Лас-Кампанас расположена в двух часах езды на машине от города Ла-Серена. Это очень удачное место для расположения обсерватории как благодаря достаточно большой высоте над уровнем моря, так и благодаря удалённости от населенных пунктов и источников пыли. Два телескопа-близнеца «Магеллан-1» и «Магеллан-2», работающие как по отдельности, так и в режиме интерферометра (как единое целое) на данный момент являются основными инструментами обсерватории (ещё есть один 2,5 метровый и два 1-метровых рефлектора).

Гигантский Магелланов Телескоп (ГМТ). Проект. Дата реализации — 2016 год.

23 марта 2012 года эффектным взрывом верхушки одной из ближайших гор было начато строительство «Гигантского Магелланова Телескопа» (ГМТ). Вершину горы снесли, чтобы расчистить место для нового телескопа, который должен начать работу в 2016 году.

Giant Magellan Telescope (GMT) будет состоять из семи зеркал по 8,4 метра каждое, что эквивалентно одному зеркалу диаметром 24 метра, за это его уже прозвали «Семиглаз». Из всех проектов огромных телескопов этот (на 2012 год) — единственный, реализация которого перешла из стадии планирования к практическому строительству.

Телескопы «Джемини»

Башня телескопа «Джемини север». Гавайи. Вулкан Мауна-Кеа (4200 м). «Джемини юг». Чили. Гора Серра-Пачон (2700 м).

Тоже два телескопа-близнеца, только каждый из «братьев» расположен в другой части света. Первый — «Джемини север» — на Гавайях, на вершине потухшего вулкана Мауна-Кеа (высота 4200 м). Второй — «Джемини юг», находится в Чили на горе Серра-Пачон (высота 2700 м).

Оба телескопа идентичны, диаметры их зеркал составляют 8,1 метра, построены они в 2000 г. и принадлежат обсерватории «Джемини», управляемой консорциумом из 7 стран мира.

Так как телескопы обсерватории расположены в разных полушариях Земли, то этой обсерватории доступно для наблюдения всё звёздное небо. К тому же, системы управления телескопами приспособлены для удалённой работы через интернет, поэтому астрономам не приходится совершать далёкие путешествия от одного телескопа к другому.

Северный «Джемини». Вид внутри башни.

Каждое из зеркал этих телескопов составлено из 42 шестиугольных фрагментов, которые были спаяны и отполированы. В телескопах используются системы активной (120 приводов) и адаптивной оптики, особая система серебрения зеркал, что обеспечивает уникальное качество изображения в инфракрасном диапазоне, система много-объектной спектроскопии, в общем «полный фарш» самых современных технологий. Всё это делает обсерваторию «Джемини» одной из самых совершенных астрономических лабораторий на сегодняшний день.

Телескоп «Субару»

Японский телескоп «Субару». Гавайи.

«Субару» по-японски значит «Плеяды», название этого красивейшего звёздного скопления знает каждый, даже начинающий, любитель астрономии. Subaru Telescope принадлежит Японской Национальной Астрономической Обсерватории , но расположен на Гавайях, на территории Обсерватории Мауна-Кеа , на высоте 4139 м., то есть по соседству с северным «Джемини». Диаметр его главного зеркала — 8,2 метра. «Первый свет» увидел в 1999 году.

Его главное зеркало — крупнейшее в мире цельное зеркало телескопа, но оно относительно тонкое — 20 см., его вес составляет «всего» 22,8 т. Это позволяет эффективно использовать точнейшую систему активной оптики из 261 привода. Каждый привод передаёт своё усилие на зеркало, придавая ему идеальную поверхность в любом положении, что позволяет добиться практически рекордного на сегодняшний день качества изображения.

Телескоп с такими характеристиками просто обязан «увидеть» во вселенной неведомые доселе чудеса. И действительно, с его помощью была открыта самая далёкая из известных на сегодняшний день галактик (расстояние 12,9 млрд. св. лет), самая большая структура во вселенной — объект протяжённостью 200 млн. световых лет, вероятно зародыш будущего облака галактик, 8 новых спутников Сатурна.. Ещё этот телескоп «особо отличился» в поиске экзопланет и фотографировании протопланетных облаков (на некоторых снимках даже различимы сгустки протопланет).

Телескоп Хобби-Эберли

Обсерватория Мак-Дональд. Телескоп Хобби-Эберли. США. Техас.

The Hobby-Eberly Telescope (HET) — расположен в США, в Обсерватории Мак-Дональд. Обсерватория располагается на горе Фолкс, на высоте 2072 м. Начало работы — декабрь 1996г. Эффективная апертура главного зеркала — 9,2 м. (Фактически зеркало имеет размер 10х11 м, но принимающие свет приборы, расположенные в фокальном узле, обрезают края до диаметра 9,2 метра.)

Не смотря на большой диаметр главного зеркала этого телескопа, Хобби-Эберли можно отнести к низко бюджетным проектам — он обошёлся всего в 13,5 млн. долларов США. Это немного, например тот-же «Субару» стоил своим создателям около 100 млн.

Сэкономить бюджет удалось благодаря нескольким конструктивным особенностям:

  • Во-первых, этот телескоп был задуман как спектрограф, а для спектральных наблюдений достаточно сферического, а не параболического главного зеркала, что гораздо проще и дешевле в производстве.
  • Во-вторых, главное зеркало не цельное, а составленное из 91 идентичного сегмента (так как его форма сферическая), что так же очень удешевляет конструкцию.
  • В-третьих, главное зеркало находится под фиксированным углом к горизонту (55°) и может вращаться только на 360° вокруг своей оси. Это избавляет от необходимости снабжения зеркала сложной системой корректировки формы (активная оптика), так как угол его наклона не изменяется.

Но не смотря на такое фиксированное положение главного зеркала, этот оптический инструмент охватывает 70% небесной сферы за счёт движения 8-тонного модуля приёмников света в фокальной области. После наведения на объект главное зеркало остаётся неподвижным, а движется только фокальный узел. Время непрерывного ведения объекта составляет от 45 минут у горизонта до 2 часов в верхней части небосвода.

Благодаря своей специализации (спектрография) телескоп успешно используется, например, для поиска экзопланет или для измерения скорости вращения космических объектов.

Большой южноафриканский телескоп

Большой Южноафриканский Телескоп. SALT. ЮАР.

Southern African Large Telescope (SALT) — находится в ЮАР в Южно-африканской Астрономической Обсерватории в 370 км к северо-востоку от Кейптауна. Обсерватория расположена на сухом плато Кару, на высоте 1783 м. Первый свет — сентябрь 2005 года. Размеры зеркала 11х9,8 м.

Правительство Южно-Африканской Республики вдохновлённое дешевизной телескопа HET, решило построить его аналог дабы не отставать от других развитых стран мира в изучении вселенной. К 2005 году строительство было завершено, весь бюджет проекта составил 20 млн. долларов США половина из которых пошла на сам телескоп, другая половина — на здание и инфраструктуру.

Так как телескоп SALT является практически полным аналогом HET, то всё, что было сказано выше о HET’е относится и к нему.

Но, конечно не обошлось без некоторой модернизации — в основном она коснулась коррекции сферической аберрации зеркала и увеличению поля зрения, благодаря чему кроме работы в режиме спектрографа, этот телескоп способен получать прекрасные фотографии объектов с разрешением до 0,6″. Адаптивной оптикой данный прибор не снабжён (наверное у правительства ЮАР не хватило денег).

Кстати, зеркало этого телескопа, крупнейшее в южном полушарии нашей планеты, делалось на «Лыткаринском заводе оптического стекла», то есть на том же, что и зеркало телескопа БТА-6, крупнейшего в России.

Самый большой телескоп в мире

Большой Канарский телескоп

Башня Большого Канарского телескопа. Канарские о-ва (Испания).

The Gran Telescopio CANARIAS (GTC) — расположен на вершине потухшего вулкана Мучачос на острове Ла-Пальма на северо-западе Канарского архипелага, на высоте — 2396 м. Диаметр главного зеркала — 10,4 м (площадь — 74 кв.м.) Начало работы — июль 2007 года.

Обсерватория называется Роке-де-лос-Мучачос. В создании GTC принимали участие Испания, Мексика и университет Флориды. Этот проект обошёлся в 176 млн. долл. США, из которых 51% заплатила Испания.

Зеркало Большого Канарского Телескопа диаметром 10,4 метра, составленное из 36 шестиугольных сегментов — крупнейшее из существующих на сегодняшний день в мире (2012 г). Сделано по аналогии с телескопами Кека.

..и, похоже GTC будет удерживать первенство по данному параметру пока в Чили на горе Армазонес (3 500 м) не построят телескоп с зеркалом сразу в 4 раза большего диаметра — «Экстремально Большой Телескоп» (European Extremely Large Telescope), или же на Гавайях не возведут Тридцатиметровый телескоп (Thirty Meter Telescope). Какой из этих двух конкурирующих проектов будет воплощён быстрее — неизвестно, но по плану и тот и другой должны быть закончены к 2018 году, что для первого проекта выглядит более сомнительно, чем для второго.

Конечно, есть ещё 11 метровые зеркала телескопов HET и SALT, но как уже говорилось выше, из 11 метров у них эффективно используется лишь 9,2 м.

Хотя это и крупнейший телескоп в мире по размеру зеркала, нельзя назвать его самым мощным по оптическим характеристикам, так как в мире существуют многозеркальные системы, превосходящие GTC по своей зоркости. О них и пойдёт речь далее..

Большой Бинокулярный Телескоп

Башня Большого Бинокулярного Телескопа. США. Аризона.

(Large Binocular Telescope — LBT) — расположен на горе Грэхем(высота 3,3 км.) в штате Аризона (США). Принадлежит Международной Обсерватории Маунт-Грэм. Его строительство обошлось в 120 млн. долл., деньги вложили США, Италия и Германия. LBT — это оптическая система из двух зеркал диаметром 8,4 метра, что по светочувствительности эквивалентно одному зеркалу диаметром 11,8 м. В 2004 году LBT «открыл один глаз», в 2005 было установлено второе зеркало. Но только с 2008 года он заработал в бинокулярном режиме и в режиме интерферометра.

Большой Бинокулярный Телескоп. Схема.

Центры зеркал находятся на расстоянии 14,4 метра, что делает разрешающую способность телескопа эквивалентной 22-метровому, а это почти в 10 раз больше, чем у знаменитого космического телескопа Хаббла. Общая площадь зеркал составляет 111 кв. м., то есть на целых 37 кв. м. больше, чем у GTC.

Конечно, если сравнивать LBT с многотелескопными системами, такими как телескопы Кека или VLT, которые могут работать в режиме интерферометра с большими, чем у LBT базами (расстоянием между компонентами) и, соответственно, давать ещё большее разрешение, то Большой Бинокулярный Телескоп уступит им по этому показателю. Но сравнивать интерферометры с обычными телескопами не совсем правильно, так как они не могут в таком разрешении давать фотографии протяжённых объектов.

Так как оба зеркала LBT посылают свет в общий фокус, то есть являются частью одного оптического прибора, в отличие от телескопов, о которых пойдёт речь дальше, плюс наличие у этого гигантского бинокля новейших систем активной и адаптивной оптики, то можно утверждать, что Большой Бинокулярный Телескоп — самый совершенный оптический прибор в мире на данный момент.

Телескопы Вильяма Кека

Башни телескопов Вильяма Кека. Гавайи.

Keck I и Keck II — ещё одна пара телескопов-близнецов. Место расположения — Гавайи, обсерватория Мауна-Кеа, на вершине вулкана Мауна-Кеа (высота 4139 м.), то есть там же где и японский телескоп «Субару» и «Джемини Север». Инаугурация первого Кека состоялась в мае 1993 года, второго — в 1996 г.

Диаметр главного зеркала каждого из них составляет 10 метров, то есть каждый из них в отдельности является вторым по величине в мире телескопом после Большого Канарского, совсем немного уступая последнему по размеру, но превосходя его по «зоркости», благодаря возможности работать в паре, а так же более высокому расположению над уровнем моря. Каждый из них способен дать угловое разрешение до 0,04 угловой секунды, а работая вместе, в режиме интерферометра с базой 85 метров — до 0,005″.

Параболические зеркала этих телескопов составлены из з6 шестиугольных сегментов, каждый из которых снабжён специальной опорной системой, с компьютерным управлением. Первая фотография была получена ещё в 1990 году, когда у первого Кека было установлено всего 9 сегментов, это была фотография спиральной галактики NGC1232.

Очень Большой Телескоп

Очень Большой Телескоп. Чили.

Very Large Telescope (VLT). Расположение — гора Параналь (2635 м.) в пустыне Атакама в горном массиве чилийских Анд. Соответственно обсерваторию называют Паранальская, принадлежит она Европейской Южной Обсерватории (ESO), включающей в себя 9 европейских стран.

VLT — это система из четырёх телескопов по 8,2 метра, и ещё четырёх вспомогательных по 1,8 метра. Первый из главных инструментов вступил в строй в 1999 году, последний — в 2002, позже — вспомогательные. После этого в течение ещё нескольких лет велись работы по настройке интерферометрического режима, инструменты соединялись сначала попарно, затем все вместе.

В настоящее время телескопы могут работать в режиме когерентного интерферометра с базой около 300 метров и разрешением до 10 микросекунд дуги. Так же, в режиме единого некогерентного телескопа, собирая свет в один приёмник по системе подземных туннелей, при этом светосила такой системы эквивалентна одному прибору с диаметром зеркала 16,4 метра.

Естественно, каждый из телескопов может работать и отдельно, получая фотографии звёздного неба с экспозицией до 1 часа, на которых видны звёзды до 30-ой звёздной величины.

Первое прямое фото экзопланеты, рядом со звездой 2M1207 в созвездии Центавра. Получено на VLT в 2004 году.

Материально-техническое оснащение Паранальской обсерватории самое продвинутое в мире. Труднее сказать каких приборов для наблюдения за вселенной здесь нет, чем перечислить какие есть. Это спектрографы всевозможных типов, а так же приёмники излучения от ультрафиолетового до инфракрасного диапазона, так же всех возможных видов.

Как говорилось выше, система VLT может работать как единое целое, но это очень дорогостоящий режим, поэтому он используется редко. Чаще, для работы в интерферометрическом режиме каждый из больших телескопов работает в паре со своим 1,8 метровым помощником (Auxiliary Telescope — AT). Каждый из вспомогательных телескопов может двигаться по рельсам относительно своего «босса», занимая наиболее выгодное для наблюдения данного объекта положение.

Всё это делает VLT мощнейшей оптической системой в мире , а ESO — самой продвинутой астрономической обсерваторией в мире, это настоящий рай для астрономов. На VLT была сделана масса астрономических открытий, а так же невозможных до этого наблюдений, например, было получено первое в мире прямое изображение экзопланеты.

Самый детальный снимок соседней галактики. Андромеду сфотографировали при помощи новой камеры сверхвысокого разрешения Hyper-Suprime Cam (HSC), установленной на японском телескопе “Субару”. Это один из самых больших в мире работающих оптических телескопов – с диаметром главного зеркала более восьми метров. В астрономии размер часто имеет решающее значение. Давайте поближе познакомимся с другими гигантами, расширяющими границы наших наблюдений за космосом.

1. “Субару”

Телескоп “Субару” расположен на вершине вулкана Мауна-Кеа (Гавайи) и работает вот уже четырнадцать лет. Это телескоп-рефлектор, выполненный по оптической схеме Ричи – Кретьена с главным зеркалом гиперболической формы. Для минимизации искажений его положение постоянно корректирует система из двухсот шестидесяти одного независимого привода. Даже корпус здания имеет особую форму, снижающую негативное влияние турбулентных потоков воздуха.

Телескоп “Субару” (фото: naoj.org).

Обычно изображение с подобных телескопов недоступно непосредственному восприятию. Оно фиксируется матрицами камер, откуда передаётся на мониторы высокого разрешения и сохраняется в архив для детального изучения. “Субару” примечателен ещё и тем, что ранее позволял вести наблюдения по старинке. До установки камер был сконструирован окуляр, в который смотрели не только астрономы национальной обсерватории, но и первые лица страны, включая принцессу Саяко Курода – дочь императора Японии Акихито.

Сегодня на “Субару” может быть одновременно установлено до четырёх камер и спектрографов для наблюдений в диапазоне видимого и инфракрасного света. Самая совершенная из них (HSC) была создана компанией Canon и работает с 2012 года.

Камера HSC проектировалась в Национальной астрономической обсерватории Японии при участии множества партнерских организаций из других стран. Она состоит из блока линз высотой 165 см, светофильтров, затвора, шести независимых приводов и CCD матрицы. Её эффективное разрешение составляет 870 мегапикселей. Используемая ранее камера Subaru Prime Focus обладала на порядок меньшим разрешением – 80 мегапикселей.

Поскольку HSC разрабатывалась для конкретного телескопа, диаметр её первой линзы составляет 82 см – ровно в десять раз меньше диаметра главного зеркала “Субару”. Для снижения шумов матрица установлена в вакуумной криогенной камере Дьюара и работает при температуре -100 °С.

Телескоп “Субару” удерживал пальму первенства вплоть до 2005 года, когда завершилось строительство нового гиганта – SALT.

2. SALT

Большой южно-африканский телескоп (SALT) расположен на вершине холма в трёхстах семидесяти километрах к северо-востоку от Кейптауна, близ городка Сазерленд. Это самый крупный из действующих оптических телескопов для наблюдений за южной полусферой. Его главное зеркало с размерами 11,1×9,8 метра состоит из девяносто одной шестиугольной пластины.

Первичные зеркала большого диаметра исключительно сложно изготовить как монолитную конструкцию, поэтому у крупнейших телескопов они составные. Для изготовления пластин используются различные материалы с минимальным температурным расширением, такие как стеклокерамика.

Основная задача SALT – исследование квазаров, далёких галактик и других объектов, свет от которых слишком слаб для наблюдения с помощью большинства других астрономических инструментов. По своей архитектуре SALT подобен “Субару” и паре других известных телескопов обсерватории Мауна-Кеа.

3. Keck

Десятиметровые зеркала двух главных телескопов обсерватории Кека состоят из тридцати шести сегментов и уже сами по себе позволяют достичь высокого разрешения. Однако главная особенность конструкции в том, что два таких телескопа могут работать совместно в режиме интерферометра. Пара Keck I и Keck II по разрешающей способности эквивалентна гипотетическому телескопу с диаметром зеркала 85 метров, создание которого на сегодня технически невозможно.

Впервые на телескопах Keck была опробована система адаптивной оптики с подстройкой по лазерному лучу. Анализируя характер его распространения, автоматика компенсирует атмосферные помехи.

Пики потухших вулканов – одна из лучших площадок для строительства гигантских телескопов. Большая высота над уровнем моря и удалённость от крупных городов обеспечивают отличные условия для наблюдений.

4. GTC

Большой Канарский телескоп (GTC) также расположен на пике вулкана в обсерватории Ла-Пальма. В 2009 году он стал самым большим и самым совершенным наземным оптическим телескопом. Его главное зеркало диаметром 10,4 метра состоит из тридцати шести сегментов и считается самым совершенным из когда-либо созданных. Тем сильнее удивляет сравнительно низкая стоимость этого грандиозного проекта. Вместе с камерой инфракрасного диапазона CanariCam и вспомогательным оборудованием на строительство телескопа было затрачено всего $130 млн.

Благодаря CanariCam выполняются спектроскопические, коронографические и поляриметрические исследования. Оптическая часть охлаждается до 28 К, а сам детектор – до 8 градусов выше абсолютного нуля.

5. LSST

Поколение больших телескопов с диаметром главного зеркала до десяти метров заканчивается. В рамках ближайших проектов предусмотрено создание серии новых с увеличением размеров зеркал в два–три раза. Уже в следующем году в северной части Чили запланировано строительство широкоугольного обзорного телескопа-рефлектора Large Synoptic Survey Telescope (LSST).

LSST – Большой обзорный телескоп (изображение: lsst.org).

Ожидается, что он будет обладать самым большим полем зрения (семь видимых диаметров Солнца) и камерой с разрешением 3,2 гигапикселя. За год LSST должен делать более двухсот тысяч фотографий, общий объём которых в несжатом виде превысит петабайт.

Основной задачей станут наблюдения за объектами со сверхслабой светимостью, включая астероиды, угрожающие Земле. Запланированы также измерения слабого гравитационного линзирования для обнаружения признаков тёмной материи и регистрация кратковременных астрономических событий (таких как взрыв сверхновой). По данным LSST предполагается строить интерактивную и постоянно обновляемую карту звёздного неба со свободным доступом через интернет.

При надлежащем финансировании телескоп будет введён строй уже в 2020 году. На первом этапе требуется $465 млн.

6. GMT

Гигантский Магелланов телескоп (GMT) – перспективный астрономический инструмент, создаваемый в обсерватории Лас-Кампанас в Чили. Главным элементом этого телескопа нового поколения станет составное зеркало из семи вогнутых сегментов общим диаметром 24,5 метра.

Даже с учётом вносимых атмосферой искажений детальность сделанных им снимков будет примерно в десять раз выше, чем у орбитального телескопа “Хаббл”. В августе 2013 года завершается отливка третьего зеркала. Ввод телескопа в эксплуатацию намечен в 2024 году. Стоимость проекта сегодня оценивается в $1,1 млрд.

7. TMT

Тридцатиметровый телескоп (TMT) – ещё один проект оптического телескопа нового поколения для обсерватории Мауна-Кеа. Главное зеркало диаметром в 30 метров будет выполнено из 492 сегментов. Его разрешающая способность оценивается как в двенадцать раз превышающая таковую у “Хаббла”.

Начало строительства запланировано на следующий год, завершение – к 2030-му. Расчётная стоимость – $1,2 млрд.

8. E-ELT

Европейский чрезвычайно большой телескоп (E-ELT) сегодня выглядит наиболее привлекательным по соотношению возможностей и затрат. Проектом предусмотрено его создание в пустыне Атакама в Чили к 2018 году. Текущая стоимость оценивается в $1,5 млрд. Диаметр главного зеркала составит 39,3 метра. Оно будет состоять из 798 шестиугольных сегментов, каждое из которых – около полутора метров в поперечнике. Система адаптивной оптики будет устранять искажения при помощи пяти дополнительных зеркал и шести тысяч независимых приводов.

Европейский чрезвычайно большой телескоп – E-ELT (фото: ESO).

Расчётная масса телескопа составляет более 2800 тонн. На нём будет установлено шесть спектрографов, камера ближнего ИК-диапазона MICADO и специализированный инструмент EPICS, оптимизированный для поиска планет земного типа.

Основной задачей коллектива обсерватории E-ELT станет детальное исследование открытых к настоящему времени экзопланет и поиск новых. В качестве дополнительных целей указывается обнаружение признаков наличия в их атмосфере воды и органических веществ, а также изучение формирования планетарных систем.

Оптический диапазон составляет лишь малую часть электромагнитного спектра и обладает рядом свойств, ограничивающих возможности наблюдения. Многие астрономические объекты практически не обнаруживаются в видимом и ближнем инфракрасном спектре, но при этом выдают себя за счёт радиочастотных импульсов. Поэтому в современной астрономии большая роль отводится радиотелескопам, размер которых напрямую влияет на их чувствительность.

9. Arecibo

В одной из ведущих радиоастрономических обсерваторий Аресибо (Пуэрто-Рико) расположен крупнейший радиотелескоп на одной апертуре с диаметром рефлектора триста пять метров. Он состоит из 38 778 алюминиевых панелей суммарной площадью около семидесяти трёх тысяч квадратных метров.

Радиотелескоп обсерватории Аресибо (фото: NAIC – Arecibo Observatory).

С его помощью уже был сделан ряд астрономических открытий. К примеру, в 1990 году обнаружен первый пульсар с экзопланетами, а в рамках проекта распределённых вычислений Einstein@home за последние годы были найдены десятки двойных радиопульсаров. Однако для ряда задач современной радиоастрономии возможностей “Аресибо” уже едва хватает. Новые обсерватории будут создаваться по принципу масштабируемых массивов с перспективой роста до сотен и тысяч антенн. Одними из таких станут ALMA и SKA.

10. ALMA и SKA

Атакамская большая миллиметровая/субмиллиметровая решётка (ALMA) представляет собой массив из параболических антенн диаметром до 12 метров и массой более ста тонн каждая. К середине осени 2013 года число антенн, объединённых в единый радиоинтерферометр ALMA, достигнет шестидесяти шести. Как и у большинства современных астрономических проектов, стоимость ALMA превышает миллиард долларов.

Квадратная километровая решётка (SKA) – другой радиоинтерферометр из массива праболических антенн, расположенных в Южной Африке, Австралии и Новой Зеландии на общей площади около одного квадратного километра.

Антенны радиоинтерферометра “Квадратная километровая решётка” (фото: stfc.ac.uk).

Его чувствительность примерно в пятьдесят раз превосходит возможности радиотелескопа обсерватории Аресибо. SKA способен уловить сверхслабые сигналы от астрономических объектов, расположенных на удалении 10–12 млрд световых лет от Земли. Начать первые наблюдения планируется в 2019 году. Проект оценивается в $2 млрд.

Несмотря на огромные масштабы современных телескопов, их запредельную сложность и многолетние наблюдения, исследование космоса только начинается. Даже в Солнечной системе до сих пор обнаружена лишь малая часть объектов, заслуживающих внимания и способных повлиять на судьбу Земли.

Телескоп «Джеймс Уэбб» - это орбитальная инфракрасная обсерватория, которая должна заменить тот самый знаменитый космический телескоп «Хаббл».

Это очень сложный механизм. Работа над его идет около 20 лет! «Джеймс Уэбб» будет обладать составным зеркалом 6,5 метров в диаметре и стоить около 6.8 млрд долларов. Для сравнения, диаметр зеркала «Хаббла» - «всего» 2.4 метра.

Посмотрим?


1. Телескоп «Джеймс Уэбб» должен быть размещен на гало-орбите в точке Лагранжа L2 системы Солнце - Земля. А в космосе холодно. Здесь показаны испытания, проводимые 30 марта 2012, направленные на изучение возможности противостоять холодным температурам пространства. (Фото Chris Gunn | NASA):



2. «Джеймс Уэбб» будет обладать составным зеркалом 6.5 метров в диаметре с площадью собирающей поверхности 25 м². Много это, или мало? (Фото Chris Gunn):

3. Сравним с «Хабблом». Зеркало «Хаббла» (слева) и «Уэбба» (справа) в одном масштабе:

4. Полномасштабная модель космического телескопа Джеймса Уэбба в Остине, штат Техас, 8 марта 2013. (Фото Chris Gunn):

5. Проект телескопа представляет собой международное сотрудничество 17 стран, во главе которых стоит NASA, со значительным вкладом Европейского и Канадского космических агентств. (Фото Chris Gunn):

6. Изначально запуск намечался на 2007 год, в дальнейшем переносился на 2014 и на 2015 год. Однако первый сегмент зеркала был установлен на телескоп лишь в конце 2015 года, а полностью главное составное зеркало было собрано только в феврале 2016 года.(Фото Chris Gunn):

7. Чувствительность телескопа и его разрешающая способность напрямую связаны с размером площади зеркала, которое собирает свет от объектов. Учёные и инженеры определили, что минимальный диаметр главного зеркала должен быть 6.5 метра, чтобы измерить свет от самых далёких галактик.

Простое изготовление зеркала, подобного зеркалу телескопа «Хаббл», но большего размера, было неприемлемо, так как его масса была бы слишком большой, чтобы можно было запустить телескоп в космос. Команде учёных и инженеров необходимо было найти решение, чтобы новое зеркало имело 1/10 массы зеркала телескопа «Хаббл» на единицу площади. (Фото Chris Gunn):

8. Не только у нас всё дорожает от начальной сметы. Так, стоимость телескопа «Джеймс Уэбб» превысила изначальные расчёты по меньшей мере в 4 раза. Планировалось, что телескоп обойдётся в 1,6 млрд долл. и будет запущен в 2011 году, однако по новым оценкам стоимость может составить 6.8 млрд, при этом запуск состоится не ранее 2018 года. (Фото Chris Gunn):

9. Это спектрограф ближнего инфракрасного диапазона. Он будет анализировать спектр источников, что позволит получать информацию как о физических свойствах исследуемых объектов (например, температуре и массе), так и об их химическом составе. (Фото Chris Gunn):

Телескоп позволит обнаруживать относительно холодные экзопланеты с температурой поверхности до 300 К (что практически равно температуре поверхности Земли), находящиеся дальше 12 а. е. от своих звёзд, и удалённые от Земли на расстояние до 15 световых лет. В зону подробного наблюдения попадут более двух десятков ближайших к Солнцу звезд. Благодаря «Джеймсу Уэббу» ожидается настоящий прорыв в экзопланетологии - возможностей телескопа будет достаточно не только для того, чтобы обнаруживать сами экзопланеты, но даже спутники и спектральные линии этих планет.

11. Инженеры тестируют в камере. систему подъема телескопа, 9 сентября 2014. (Фото Chris Gunn):

12. Исследование зеркал, 29 сентября 2014. Шестиугольная форма сегментов была выбрана не случайно. Она обладает высоким коэффициентом заполнения и имеет симметрию шестого порядка. Высокий коэффициент заполнения означает, что сегменты подходят друг к другу без зазоров. Благодаря симметрии 18 сегментов зеркала можно разделить на три группы, в каждой из которых настройки сегментов идентичны. Наконец, желательно, чтобы зеркало имело форму, близкую к круговой - для максимально компактного фокусирования света на детекторах. Овальное зеркало, например, дало бы вытянутое изображение, а квадратное послало бы много света из центральной области. (Фото Chris Gunn):

13. Очистка зеркала сухим льдом из двуокиси углерода. Тряпками здесь никто не трет. (Фото Chris Gunn):

14. Камера A — это гигантская испытательная камера с вакуумом, которая будет моделировать космическое пространства при испытаниях телескопа «Джеймса Уэбба», 20 мая 2015. (Фото Chris Gunn):

17. Размер каждого из 18 шестигранных сегментов зеркала составляет 1.32 метра от ребра до ребра. (Фото Chris Gunn):

18. Масса непосредственно самого́ зеркала в каждом сегменте - 20 кг, а масса всего сегмента в сборе - 40 кг. (Фото Chris Gunn):

19. Для зеркала телескопа «Джеймса Уэбба» используется особый тип бериллия. Он представляет собой мелкий порошок. Порошок помещается в контейнер из нержавеющей стали и прессуется в плоскую форму. После того как стальной контейнер удалён, кусок бериллия разрезается пополам, чтобы сделать две заготовки зеркала около 1.3 метра в поперечнике. Каждая заготовка зеркала используется для создания одного сегмента. (Фото Chris Gunn):

20. Затем поверхность каждого зеркала стачивается для придания формы, близкой к расчётной. После этого зеркало тщательно сглаживают и полируют. Этот процесс повторяется до тех пор, пока форма сегмента зеркала не станет близка к идеальной. Далее сегмент охлаждается до температуры −240 °C, и с помощью лазерного интерферометра производятся измерения размеров сегмента. Затем зеркало с учётом полученной информации проходит окончательную полировку. (Фото Chris Gunn):

21. По завершению обработки сегмента передняя часть зеркала покрывается тонким слоем золота для лучшего отражения инфракрасного излучения в диапазоне 0,6-29 мкм, и готовый сегмент проходит повторные испытания при криогенных температурах. (Фото Chris Gunn):

22. Работа над телескопом в ноябре 2016 года. (Фото Chris Gunn):

23. НАСА завершило сборку космического телескопа «Джеймс Уэбб» в 2016 году и приступило к его испытаниям. Это снимок от 5 марта 2017 года. На длинной выдержке техники выглядят призраками. (Фото Chris Gunn):

26. Дверь в ту самую камеру А с 14-й фотографии, в которой моделируется космическое пространство. (Фото Chris Gunn):

28. Текущие планы предусматривают, что телескоп будет запущен с помощью ракеты «Ариан-5» весной 2019 года. Отвечая на вопрос о том, что ученые ожидают узнать с помощью нового телескопа, ведущий научный сотрудник проекта Джон Мэтер сказал: «Надеюсь, мы найдем что-то, о чем никто ничего не знает». UPD. Запуск телескопа «Джеймс Уэбб» перенесен на 2020 год. (Фото Chris Gunn).

Аресибо - астрономическая обсерватория, расположенная в Пуэрто Рико, в 15 км от города Аресибо, на высоте 497 м над уровнем моря. Ее радиотелескоп является самым большим в мире и используется для исследований в области радиоастрономии, физики атмосферы и радиолокационных наблюдений объектов Солнечной системы. Также информация с телескопа поступает для обработки проектом SETI@home, посредством подключённых к Интернету компьютеров добровольцев. Проект этот, напомним, занимается поиском внеземных цивилизаций.

Помните 10 лет назад был фильм про Джеймса Бонда - "Золотой глаз". Там как раз действия разворачивались на этом телескопе.

Многие наверное подумали что это декорации к фильму. А телескоп к тому моменту уже работал 50 лет

Обсерватория Аресибо находится на высоте 497 метров над уровнем моря. Несмотря на то, что расположена она в Пуэрто Рико, используется и финансируется она всевозможными университетами и агентствами США. Основным предназначением обсерватории является исследование в области радиоастрономии, а также наблюдение за космическими телами. Для этих целей и был построен самый большой в мире радиотелескоп. Диаметр тарелки составляет 304,8 метров.

Глубина тарелки (зеркало рефлектора по научному) сотавляет - 50,9 метров, общая площадь - 73000 м2. Изготовлена она из 38778 перфорированных (дырчатых) алюминиевых пластин, уложенных на сетку из стальных тросов.

Над тарелкой подвешена массивная конструкция, передвижной облучатель и его направляющие. Держится она на 18 тросах, натянутых от трёх башен поддержки.



Если Вы купите входной билет на экскурсию, стоимостью 5$, то получите возможность подняться на облучатель по специальной галерее или в клетке подъёмника.

Строительство радиотелескопа было начато в 1960 году, а уже 1 ноября 1963 года состоялось открытие обсерватории.


За время своего существования, радиотелескоп Аресибо отличился тем, что были открыты несколько новых космических объектов (пульсары, первые планеты за пределами нашей Солнечной системы), лучше исследованы поверхности планет нашей Солнечной системы, а также, в 1974 году было отправлено послание Аресибо, в надежде, что какая-нибудь внеземная цивилизация откликнется на него. Ждёмс.

При проведении этих исследований включается мощный радар и измеряется ответная реакция ионосферы. Антенна такого большого размера является необходимой, потому что на тарелку для измерения попадает лишь малая часть рассеянной энергии. Сегодня только треть времени работы телескопа отведено для изучения ионосферы, треть - для исследования галактик, а оставшаяся треть отдана астрономии пульсаров.

Аресибо, без сомнения, превосходный выбор для поиска новых пульсаров, поскольку огромные размеры телескопа делают поиски более продуктивными, позволяя астрономам находить доселе неизвестные пульсары, которые оказались слишком малы, чтобы быть замеченными при помощи телескопов меньших размеров. Тем не менее, такие размеры имеют и свои недостатки. Например, антенна должна оставаться закрепленной на земле из-за невозможности управлять ей. Вследствие чего телескоп в состоянии охватить только сектор неба, который находится непосредственно над ним на пути вращения земли. Это позволяет Аресибо наблюдать за сравнительно небольшой частью неба, по сравнению с большинством других телескопов, которые могут охватывать от 75 до 90% неба.


Второй, третий и четвертый по величине телескопы, которые используются (или будут использоваться) для исследования пульсаров - это соответственно телескоп Национальной радиоастрономической обсерватории (НРАО) в Западной Вирджинии, телескоп института Макса Планка в Эффельсберге и телескоп Грин-Бэнк НРАО тоже в Западной Вирджинии. Все они имеют диаметр не менее 100 м и полностью управляемы. Несколько лет назад 100-метровая антенна НРАО упала на землю, и сейчас ведутся работы по установке более качественного 105-метрового телескопа.

Это лучшие телескопы для изучения пульсаров, не попадающих в радиус действия Аресибо. Заметьте, что Аресибо втрое больше 100-метровых телескопов, а это значит, что он охватывает площадь в 9 раз большую и достигает результатов научных наблюдений в 81 раз быстрее.

Тем не менее, существует множество телескопов диаметром меньше 100 метров, которые также успешно используются для изучения пульсаров. Среди них Parkes в Австралии и 42-метровый телескоп НРАО.

Большой телескоп может быть заменен совмещением нескольких телескопов меньших размеров. Эти телескопы, точнее, сети телескопов, могут охватывать площадь, равную той, которая охватывается стометровыми антеннами. Одна из таких сетей, созданная для апертурного синтеза, называется Very Large Array. Она насчитывает 27 антенн, каждая 25 метров в диаметре.



Начиная с 1963 года, когда было закончено строительство обсерватории Аресибо в Пуэрто-Рико (Arecibo Observatory in Puerto Rico), радиотелескоп этой обсерватории, диаметром 305 метров и площадью 73000 квадратных метров, был самым большим радиотелескопом в мире. Но вскоре Аресибо может потерять этот статус из-за того, что в провинции Гуйчжоу, расположенной в южной части Китая, начато строительство нового радиотелескопа Five-hundred-meter Aperture Spherical radio Telescope (FAST). По завершению строительства этого телескопа, которое согласно планам должно завершиться в 2016 году, телескоп FAST будет в состоянии "видеть" космос на глубину в три раза больше и производить обработку данных в десять раз быстрее, чем это позволяет оборудование телескопа Аресибо.


Изначально строительство телескопа FAST было намечено для участия в международной программе Square Kilometer Array (SKA), в рамках которой будут объединены сигналы с тысяч антенн радиотелескопов меньших размеров, разнесенных на расстояние 3000 км. Как известно на данный момент , телескоп SKA будет возводиться в южном полушарии, но вот где именно, в Южной Африке или Австралии, будет решено позже.

Несмотря на то, что предложенный проект телескопа FAST не стал частью проекта SKA, китайское правительство дало проекту зеленый свет и выделило финансирование в размере 107,9 миллионов долларов для начала строительства нового телескопа. Строительство было начато в марте месяце, в провинции Гуйчжоу, в южной части Китая.

В отличие от телескопа Аресибо, который имеет неподвижную параболическую систему, фокусирующую радиоволны, кабельная сеть телескопа FAST и система конструкции параболического отражателя позволят телескопу менять форму поверхности отражателя в режиме реального времени с помощью системы активного контроля. Это станет возможным благодаря наличию 4400 треугольных алюминиевых листов, из которых формируется параболическая форма отражателя и которую можно навести на любую точку ночного неба.

Использование специальной современной приемной аппаратуры придаст телескопу FAST беспрецедентно высокую чувствительность и высокие скорости обработки поступающих данных. С помощью антенны телескопа FAST можно будет принять настолько слабые сигналы, что станет возможным "рассматривание" с его помощью нейтральных облаков водорода в Млечном пути и других галактиках. А основными задачами, над которыми будет работать радиотелескоп FAST, будут обнаружение новых пульсаров, поиск новых ярких звезд и поиск внеземных форм жизни.

источники
grandstroy.blogspot.com
relaxic.net
planetseed.com
dailytechinfo.org

gastroguru © 2017